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1 Introduction

The multiplication M of a multiplying object can be determéhby analyzing the arrival times of thermal
neutrons in detectors such as helium tubes. A source eqitgatrons randomly will lead to neutron inter
arrival times obeying Poisson process statistics. By afisghow the inter arrival times of detected counts
differ from Poisson statistics, one can assess propertidgmeutron source such as the source intensity
and multiplication.

While the method of analyzing the inter arrival times of meus using count distributions to determine
characteristics of the source has been used for a long tmetréatment of the errors on the determined
guantities multiplication M and source strength S have mbtbeen adequately treated. This object of this
report is to assess these errors.

2 Methodology

To compute the multiplication M and the source strength Shaflgiect, we first divide the data stream into
N non overlapping segments of equal width T. By counting tlialner of detected neutrons in each of the
segments, we can build a count distribution. Normalizirig tiount distribution by the number of segments
N, we getby(T), the probability of gettingr counts in a time gate T. A typical count distribution is shown
in Fig. 1 for T=512useconds.
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Figure 1: Example of a random time gate count distributiothWw=512 useconds
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We assume that each data point in the count distribugios a binomially distributed random variable,
so that if we define

Ch=Nby+ &, (1)
whereg, is the error on the data point, the variance on each point is
var (by) = (£2) = Nby (1—by) 2)

where Z.) stands for taking the ensemble average over a number of imgms. Another quantity of
importance is the covariance between the ergren differentb,. Given the constraint that thg, are

bound by

nicnm =N @3)

the sum of all the errors, is zero for any given experiment. Therefore, there existegative correlation
between the errors,, an increase in one component requires a decrease in amotmg@onent. It can be
shown (as in Ref. [1]) that the covariance between thesesago

(En1&n2) = —Nbnibn2 4)

The first moment of the count distributidm, is the average number of events counted in a fixed time
gate width T:

C(T) =Y nbn(T) (5)
n=0
The variance on this number can be calculated by propagttegrrorse, on theb, distribution via Eq. 5:

C =

S ne, ®)
n=0
™

For the sake of clarity later in the text, we define
oCc=C C—lins (8)
- - — N1 n
N n=1

Squaring Cin EqQ. 7, we get

l (o]
Nen+ 13 ( Z)nZgﬁ +2 12 n1n25n15n2> 9)
n= n—= nl<n2



Taking the ensemble average over a number of experimersavwrages of the individual erroeg are
equal to zero(&,) = 0) and we thus have

(C?) _ 0+ — (Z n°Nby, (1—by) — 2N
n=0

N2 Z nlnzbl’ll bl’lz) (10)

nl<n2

where we have used Egs. 2 and 4. Redistributing the termsnalyfget the variance on C:

(c-0)% = ©-C

a{ae (3

C(T) is plotted as a function of the time gate width T as in Fig. 2e Variance oi€ is so small that the
error bars can not be seen on the graph without zooming in.
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Figure 2: First moment of the random time gate count distigiouas a function of the time gate width
Knowing that the first moment is also equal to
_ M-1
C(T) = s(M—?>ST
= RT (11)

where S is the source strength in neutrons per second, tm @iaR; can be extracted by fitting the points
in Fig. 2 with the straight line given by Eq. 11.
The Feynman variancér (T) of by, is defined as

X

(T)

Yor (T) = T

(12)
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Y%(T) = % ( ; >bn(T)— % ( ; >IP’n(T) (13)

n=0

andP,(T) is the Poisson probability of getting n counts within timéega for the count rate determined
above. The second combinatorial moment of the Poisson bilapawill be derived first (P,(T) will be
replaced byP, for the sake of simplicity):

2(2)m = 2 (2)5e

12 cn _c
= =y ———¢€
Zn;(n—Z)!
cz e cm
o Z leic
2 £, (m)!
C2

2

The variances oM (T) andYz (T) will be derived in turn:

12 /n
Y2 = Nn;<2

1 00

NnZZ

— 2
- [ n C¢ 1 [
— &h— — Néy— —— nég
nZZ(z) " NnZl " 2N? <nZl ”)

where the last term is of"? order and can safely be ignored.

_ 12 n _
Y2:Y2+Nn;[< 2>—Cn} &n (14)
For the sake of clarity, we define
N=Y-G=25 (") _cnle (15)
2= 12 2= N nZ]_ 2 n



We now turn to calculating the variance W (T)
o 2
o2 _ (V2 Y2
(YZF —YZF) = (E E)
- ~ o= 2

[ (2+8Y2)C-Y;(C+5C)

B cC

<5Y26—\?250>2

CcC
SYZC? +Y,°6C2 — 25Y,CY55C
(cC)®
o Y2'8C% ,OY2%25C

C? CZCZ cC

Neglecting higher order terms, we get

2 2
2 2 oYy oC oY,0C
(Yor —Yor )" =Yar <<Y:2> +<?> -2 Y,C ) (16)

SubstitutingdC anddY, by their expressions and taking the ensemble averages,twe ge

iz (z54((3) ) )’

(Y —Y2F)) = 5l =
. <(Z%°—é2”€n)2>
((Zcﬁo—l ( 2 > - n(_3> €nY n-1Nén)
2 ] (17)
Y,C

Fig. 3 shows the Feynman varian¥g computed for a simulationY,= as well as its variance are
computed as many times as the number of time gates using EopdlA 7, respectively.
The analytical expression fofe (T ) from the point model theory is

M—1 1-e AT
Yr(T)=e(M——— ) (D2s+(M—=1)D3) [ 1— (18)
Y AT
The asymptote of this expression is
. M-1
R = Jm Yor(T) = (M~ ¥-% ) (Dt (M~ D). (19)

The green curve in Fig. 3 shows the fit to the Feynman variagae ) using Eq. 18. The fit parameters
A andRyr along with their standard deviation are shown in the figurac&Ryr is known, Eq. 19 can be
used to determine the value of the multiplication M alongwiti$ standard deviation.

In summary, if we know the californium source strength, we datermine the efficiency and multi-
plication M from Egs. 11 and 19.
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Figure 3: Feynman variandeg (T), fit by Eq. 18

3 Assumptions made for the analysis

For the analysis, we will assume that we know the source igof3°C ) and its strength (2 x 10° neu-
trons/second). We will also assume that the source is suteniby some multiplying medium. We will pick
uranium, in which?®®U multiplies the number of neutrons by inducing fissions. @itkeat the simulation
was performed with no multiplying medium around the objéleg analysis should tell us that the system
was actually not multiplying, that its multiplication M wds

4 Nuclear data

Equations 11 and 18 contain several parameters that nedd etdiscussedv is the average number of
neutrons emitted per induced fission, and is equal to 2.52%fF. vg is the average number of neutrons
emitted per spontaneous fission. In the case of califorr@6@-vs = 3.77. Dys is the ratio of the second
combinatorial moment of the spontaneous fission neutrorbeurtistributionvos to vs. D> is its counterpart
for induced fissionvys = 6.02 for252Cf, while v, = 2.55 for23%U.

5 Simulations

Nine simulations of the same californium-252 neutron seunc6” of polyethylene were carried out with
different random number generator seeds with MCNPX. Eattulsition was 10 minutes long. Helium-3
tubes were placed around the polyethylene to capture tmm#h@eutrons. Neutrons are capturedie
via the reactiom(®He, p)®H. The capture time tags were saved in list-mode in 9 output. fithese files
were subsequenlty analyzed using the method explainediinse and the assumptions in section 4.



6 Overlapping time gates

The time tagged data was analyzed different ways. Becaesanthlysis for the first 2 cases differs greatly
from the analysis for the last 3 cases, we will discuss thgrarseely.

For the first 2 cases, we use the original method of analysiegiata, which was originally constrained
by the hardware available at the time. The data stream waedsinto N segments of equal widths (2
for instance). Counting the number of counts in the first oBecond of each one of these N segments,
one can build a count distribution for a gate width @fsl An example of such a distribution was shown in
Fig. 1. Counting the number of counts in the first two micrasets of each one of these N segments, one
would build a count distribution of gate widthu, and so on, until we get 512 different count distributions.
Of course, because the count distribution for thes@me gate used in part the same data as the count
distribution for the s time gate, the @s count distribution was not independent from thgslcount
distribution, and so on for all the time gates. The momenthefcount distributions were then computed
and fit with Egs. 11 and 18. The standard deviatiorRgnwas taken to be equal to the standard deviation
on the last time gate (the 5f'2ime gate). This choice for the standard deviation was ndtaice of the
author, but the method conventionally used.

6.1 512 time gates in arithmetic progression from 1 to 512s

Using 512 time gates increasing arithmetically from 1 to pk2n increments of lus, we get the results in
Table 1 for the 9 simulations:

| simulaton] M | M range | 1/A [ug] |

1 0.998267| [0.961865:1.034644] 192.9
2 1.268506| [1.232080:1.304907] 296

3 0.731006| [0.694775:0.767261] 163.1
4 1.000122| [0.963721:1.036523] 193

5 1.005347| [0.968994:1.041699] 215.5
6 1.419678| [1.383496:1.455859] 338.7
7 1.297363| [1.261328:1.333374] 279.5
8 0.853955| [0.817627:0.890308] 176.3
9 0.945630( [0.909131:0.982129] 191.6

Table 1: Multiplication for 9 different simulations usind % time gates in arithmetic progression fronug
to 512us.

The 39 column gives the range of multiplication M obtained usityg + / — g. One should note that the
values of the multiplication M were in no way constrained ¢ogveater than 1, as they should be physically.
M was computed mathematically by solving the 2 equationy@bo

6.2 512 time gates in arithmetic progression from 4 to 20001s

We observe in Table 1 that the time constant is of the order of 20Qus. To get a more accurate value of
M, it would be better to compute the Feynman variance on agjate range that goes at least up to 10 times
A~L. Indeed, while 512us is not high enough to get a good fit e (T) when theA ~! time scale is of
the order of 20Qus, 2000 us should be sufficient. Given that each 20@9segment is 4 times longer than
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the previous 5121s, the number of samples in the new count distributignvill be decreased by a factor 4.
Using 512 time gates increasing arithmetically from 4 to@Q@in increments of 4us, we get the results

in Table 2:
| simulation| M \ M range | 1/A [ug] |
1 1.11333 | [1.039648:1.187012] 231.9
2 0.996387| [0.922697:1.070190] 180.7
3 0.925586| [0.852686:0.998462] 206.9
4 1.11333 | [1.039648:1.187012] 232.0
5 1.076636| [1.003296:1.150000] 229.4
6 1.057666| [0.984082:1.131201] 253.7
7 0.955396| [0.882080:1.028711] 209.3
8 0.846191| [0.773462:0.918945] 139.0
9 1.018555| [0.945703:1.091382] 205.5

Table 2: Multiplication for 9 different simulations using % time gates in arithmetic progression fronug

to 2000us.
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Figure 4: Multiplication ranges for the two different gatédih ranges

Several observations need to be made on Fig. 4, which shewartige of the multiplication M obtained
for the two choices of time gate ranges. The larger time gaige results in multiplications much closer to
the true value of 1 than the shorter time gate range. Alsgphead of the multiplication M is much narrower
for the longer time gate range. As a conclusion, a good chafitiene gate range based on the value\of
is important. One should note however that the number ofipliglation intervals including the right answer
M=1 is 3 and 4 for the short and larger time gate ranges, réisp; which is less than the expected value
of 0.68x9 = 6 for a 1 sigma confidence interval. The standard deviatiothermultiplication seems to
be too small, which is not surprising, given that the staddhaviation orRyr was taken to be equal to the



standard deviation on the last time gaté/gf(T), which is incorrect. The rest of this report revisits the way
the standard deviation dRyr is estimated.

7 Non-overlapping time gates

One of the deficiencies of the method used above was thatitie data was used over and over to compute
the count distributions for all the time gates. Therefotethe points along th&or (T) were correlated and
it was difficult to the standard deviation on the fit parametdrande correctly.

Instead of reusing the same data over and over for the diff¢irae gates, we now propose to compute
each count distribution from its own data segment, and thta degment will not be used by any other
count distribution. This is how the algorithm is implemahia practice. The first task is to choose a set
of time gate widths for which we wish to compute count disttibns. In the 3 examples below, we picked
57, 60 and 63 times gates widths ranging from 1 ns to 241048 us, and 2096us, respectively. As
the data arrives, we first pick randomly which time gate torop©nce a time gate of width T has been
chosen, we count how many events arrive within the time walef, and update the corresponding count
distribution. We then pick another time gate randomly far tiext data segment. Thus, we get a number of
count distributiongo, that will have been built from different sets of the entiréadstreamYor can then be
computed for each of these count distributidips Because each of the¥g values will be independent of
each other, we can use Minuit [2] to fit the data with Eq. 18. bitiwill also produce the standard deviations
around the fit parameters M aidd . This could not be done using the other technique and indkgree
between the data points is required for the standard dewiad be computed correctly.

N.B.: After doing this work, | realized that it would be more adequate for the smallest time gate
to be 1 usinstead of 1 ns. Anything below 1us (let alone 1 ns) makes no sense for thermal neutrons.
Also, using 1 ns in general breaks the assumption in the poinnhodel theory that the fission chain
neutrons are all emitted instantaneously compared to the diusion time scale of the neutrons through
the surrounding material to the detector. While this is not aproblem with 252Cf, because there are no
induced fissions and we can assume that the spontaneous fissi®utrons are emitted instantaneously
compared to the 1 ns "diffusion time scale”, this would lead © problems for multiplying systems.

7.1 57 non-overlapping time gates in geometric progressidnom 1 ns to 524 us

Using 57 non overlapping time gates increasing in size uaiggometric progression from 1 ns to 524,
we getYor shown in Fig. 5 for the first (out of nine) simulation. The dadit by Eq. 18, and the standard
deviations om ~* andRyr shown in the figure are computed by Minuit.

The results for the 9 simulations are summarized in Table 3:

We observe in Table 3 that the standard deviatior ohis large. This is a consequence of the largest
count distribution time interval (52¢s) being too small compared to the value)ofl. The next 2 sections
will use the same method of non-overlapping time intervalsfor larger time intervals.

7.2 60 non-overlapping time gates in geometric progressidnom 1 ns to 1048us

Using 60 non overlapping time gates increasing in size ugiggometric progression from 1 ns to 1048
we get the results in Table 4.

10
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Figure 5: Feynman variandeg (T), fit by Eq. 18

| Simulation]| M | M range | 1/A [us |
1 0.80752 | [0.596191:1.018848] 171+43
1.499243| [0.829102:2.169385] 325+ 130
1.577588| [0.807837:2.347363| 344+ 147
0.807153| [0.595874:1.018457] 171+43
]
]
}

1.185229| [0.790601:1.579883| 246+ 78
0.995776| [0.661304:1.330225] 211+ 68
1.110181| [0.656763:1.563574] 267+97
0.74939 | [0.546289:0.95249]| 162+42
9 2.592871| [0.583569:4.602246] 525+ 302

N0~ WIN

Table 3: Multiplication for 9 different simulations using Hon-overlapping time gates in geometric pro-
gression from 1 ns to 524.

Table 4 shows values @f ! that fluctuate much less than in the previous case. The sthddsiations
on A1 are much smaller as well. In the next section, we will incectig largest count distribution time
gate to be 209@is, which is about 10 times the value »f 2.

7.3 63 non-overlapping time gates in geometric progressidnom 1 ns to 2096us

Using 63 non-overlapping time gates increasing in widthngetically from 1 ns to 20961s, we get the
results in Table 5.

The values ofA 1 shown in Table 5 are well behaved, all the valued ot are within a small interval.
The multiplication ranges from the last 3 tables are ploitelig. 6.

We observe in Fig. 6 that 9 out of 9 multiplication intervads the 57 gate case encompass the the right
value M=1, 5 out of 9 for the 60 gate case, and 8 out of 9 for thg&8 case. These 3 ratios are close to
what we would expect for a 1 sigma confidence interval. Thasiltds much better than what we observed
in Fig. 4 for the overlapping time gates.
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\ Simulation H

M

M range \

/A 4 |

1

1.290674

[1.036377:1.544971

302+ 72

1.285400

[1.039282:1.531494

304+ 68

1.025391

[0.846265:1.204492

231+49

1.290674

[1.036377:1.544971

302+ 72

1.138916

227+ 47

1.026904

[0.840137:1.213623

237+53

0.915308

[0.762134:1.068506

192442

N OO0 WN

1.328662

[1.055615:1.601758

319+ 78

9

1.137842

|
]
|
|
[0.959668:1.318213]
]
]
]
|

[0.962427:1.313281

228+ 46

Table 4. Multiplication for 9 different simulations usind éion-overlapping time gates in geometric pro-

gression from 1 ns to 1046.

\ Simulation H

M

M range \

/A e |

1

1.011475

[0.881812:1.141113

213+44

1.069775

[0.933667:1.205908

239+ 48

1.037328

[0.877368:1.195288

254+ 61

1.011841

213+ 44

1.091406

[0.950903:1.231934

244+ 50

0.951025

]
]
]
[0.882178:1.141504]
]
|

[0.822119:1.079932

203+ 45

0.893359

[0.763599:1.02312]

199+ 46

N OO0 BAWN

1.022412

[0.87981:1.16499]

236+ 52

9

1.152954

[1.021411:1.284473]

229+43

Table 5: Multiplication for 9 different simulations usin@® éon-overlapping time gates in geometric pro-
gression from 1 ns to 2096.

Another interesting point is that even though the shortest gvidth interval 1 ns to 524is has four
times the number of samples as the longest gate width irt&éma to 2096us, the standard deviation on
the multiplication M is much larger. This reiterates thetfdmat the largest time gate width has to be much
larger than the characteristic* of the problem.

8 Conclusion

The results of this study show that analyzing the data stresimg non-overlapping time gates is an im-
provement over the current analysis using overlapping tyates. The new method enables us to compute
the standard deviation on the multiplication parameter Musately. Also, this standard deviation on M
decreases as the largest time gate is about 10 times thethistic time constam ~* of the system.

It was also shown that the analysis accurately predicts fiptichtion of 1 for2>2Cf in a non-multiplying
configuration.
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57 time éates in geometric pr‘ogression from 1 ns‘to 524 us|+—+—
60 time gates in geometric progression from 1 ns to 1048 us
63 time gates in geometric progression from 1 ns to 2096 us | +—*—
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Figure 6: Multiplication ranges for the three different gatidth ranges: 57 time gates from 1 ns to 524
usin geometric progression (red), 60 time gates from 1 ns t@108lin geometric progression (green), 63
time gates from 1 ns to 2096s in geometric progression (blue).
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